Главная » Блоги Экспертов И ИТ-Компаний » СЕКРЕТЫ CITIZEN DATA SCIENCE
Бизнес-подход к анализу данных 10 месяцев назад

СЕКРЕТЫ CITIZEN DATA SCIENCE

Каждые 18 месяцев объем данных удваивается. Те времена, когда опытный пользователь мог свести и проанализировать все данные в одном листе Excel, давно прошли. Как предприятия справляются с растущими объемами данных? Чаще всего они комбинируют несколько подходов:

1. Работа только с небольшой выборкой данных.

2. Привлечение специалистов data science к анализу больших данных.

Компания «Полиматика» ставит своей целью подготовку и расширение возможностей citizen data scientist – бизнес-пользователя с навыками аналитика, который не обладает глубоким техническим бэкграундом, но знает предметную область, способен задавать правильные вопросы, интерпретировать результаты и действовать, не упуская момент.

Рассмотрим роль citizen data scientist в отделе маркетинга, когда требуется провести сложную сегментацию большой аудитории для запуска новой таргетированной рекламной кампании. Сitizen data scientist точно знает, что нужно для запуска кампании — за считанные минуты миллионы клиентов распределяются на сегменты, основываясь на их поведении в прошлом. И время от постановки вопроса до получения ответа сокращается с нескольких дней до нескольких минут.

ВОЗМОЖНОСТИ POLYMATICA

С Polymatica возможности бизнес-пользователей с навыками аналитика в вашей организации могут быть очень легко расширены. В дополнение к неограниченному просмотру и обработке данных, они получат простой доступ к модулям машинного обучения, таким как:

  • кластеризация,
  • ассоциативные правила,
  • прогнозирование.

Они смогут проводить анализ на полной выборке – без ограничений по объёму или задержек, вызванных масштабированием данных организации.

МОДУЛИ ОБРАБОТКИ ДАННЫХ

Мы выступаем за то, чтобы расширить возможности бизнес-пользователей и дать им возможность выполнять свой собственный анализ – и модули Polymatica разработаны специально для этого.

Расширение полномочий бизнес-пользователей начинается с предоставления прямого доступа к инструментам комплексного анализа. То, что обычно занимает недели, теперь может быть выполнено в течение дня.

Ниже перечислены примеры того, что бизнес-пользователь может сделать за один день:

1. Провести сложную сегментацию клиентов за считанные минуты.

2. Изучить поведение каждого сегмента и выявить те из них, которые можно подтолкнуть к более высоким расходам.

3. Для выбранной группы определить, какие продукты приобретаются одними и теми же клиентами, используя ассоциативные правила – и подготовить таргетированную кампанию, нацеленную на рост перекрестных продаж.

4. Просчитать прогнозируемый средний чек в каждом из сегментов.

КЛАСТЕРИЗАЦИЯ

Встроенный модуль кластеризации Polymatica позволяет выполнять автоматическое распределение объектов по группам, основанное на любом количестве параметров. Polymatica справляется с любыми сложностями – все, что вам нужно сделать, это нажать одну кнопку.

Специалист по обработке данных сталкивается с двумя важными решениями, выполняя кластеризацию: выбор алгоритма кластеризации и выбор количества самих кластеров. Сделав выбор, он проводит тестирование на небольшом подмножестве. Как только алгоритм и количество кластеров выбраны, процесс запускается на всем объёме данных. Недостаток такого подхода заключается нюансах, которые упускаются при работе с малыми подмножествами.

Возьмём в качестве примера сегментацию клиентов по чеку, количеству транзакций и заработной плате. Используя стандартные методы, специалист по обработке данных запускает ряд тестов, чтобы определить подходящий алгоритм и количество кластеров, на подмножестве из 100 000 транзакций. Он останавливается на иерархическом алгоритме с 14 кластерами. Затем он запускает алгоритм, который будет работать всю ночь и проанализирует миллиард транзакций, совершенных 5 миллионами клиентов. Однако специалист по обработке данных упускает из виду, что есть некоторое количество выпадающих показателей в полном объёме данных – люди с очень высокой заработной платой, которые расходуют сравнительно небольшие суммы.

Polymatica запускает кластеризацию нажатием одной кнопки. Бизнес-пользователь, выполняя тот же самый анализ, сразу же запускает кластеризацию на полном объёме данных, используя рекомендованные Polymatica 16 кластеров – включая кластер, в который входят обеспеченные люди со средними расходами. Грамотная маркетинговая стратегия позволит переместить эту группу в другой кластер – обеспеченных людей с высокими расходами.

Для чего ещё можно использовать кластеризацию?

Вы хотите вычислить клиентов, которые стали покупать у вас реже. Можно взять интересующий вас период времени, дату покупки и провести кластеризацию. С большой долей вероятности у вас выделиться кластер клиентов, в котором частота покупки уменьшилась, и для этих клиентов можно запустить сценарий по удержанию.

АССОЦИАТИВНЫЕ ПРАВИЛА

Ассоциативные правила позволяют пользователю выявлять свойства объектов, которые часто пересекаются. К примеру, в розничных продажах ассоциативные правила используются для того, чтобы определить, какие продукты приобретаются одним и тем же клиентом. Два ключевых параметра, получаемых с помощью ассоциативного анализа, — это популярность и достоверность.

 


Популярность и достоверность
Рис. 1: Популярность и достоверность на примере с яблоками и сыром

 

Пользователь может выбрать удобный для себя порог популярности – минимальное количество событий, происходящих вместе. Популярность и достоверность отображаются для всех комбинаций объектов.

Бизнес-пользователь способен выявить общие случаи в 10 миллионах транзакций, содержащих 10 000 типов заказов, за 2 минуты. После выбора пары продуктов исходные данные могут быть отфильтрованы для дальнейшего анализа.

 


Ассоциативные правила
Рис. 2: Пример модуля ассоциативных правил в Polymatica

 

ПРОГНОЗИРОВАНИЕ

Прогнозирование является еще одной задачей, которую обычно ставят перед специалистом по обработке данных. При поиске решения этой задачи в большинстве случаев требуются десятки тестов. Polymatica позволяет бизнес-пользователю запускать алгоритмы прогнозирования, основываясь на любых фактах и аспектах.

К примеру, прогнозирование расходов на следующий месяц потребует всего трех кликов. Polymatica оценит 1000 моделей, включая линейные и полиномиальные регрессии, фильтры ARIMA, ARIMA-T и Kalman. Наилучший результат будет представлен пользователю.

Запуск прогнозирования на больших объемах данных крайне важен, поскольку в противном случае могут быть упущены значимые факторы, такие как сезонность. Polymatica подбирает наиболее подходящую модель в каждом случае, учитывая индивидуальные тенденции и тренды.

Так, в то время как общий тренд указывает на то, что обычно клиенты делают покупки по выходным, некоторые из клиентов могут работать по другому графику и делать покупки только по вторникам. Polymatica определяет такие индивидуальные тренды и подбирает оптимальную модель для выявления скрытых паттернов.

РАСШИРЕНИЕ ВОЗМОЖНОСТЕЙ ДЛЯ БИЗНЕС-ПОЛЬЗОВАТЕЛЕЙ

Используя встроенные модули работы с данными, Polymatica предоставляет бизнес-пользователям полный набор инструментов для проведения анализа, которым обычно занимаются сотрудники, знающие как писать SQL-запросы или программировать на Python/R. C одной стороны все должны заниматься своим делом. С другой – если писать техническое задание и сделать всю работу занимает одно и то же время, какой вариант более эффективен для бизнеса?


Данный материал является частной записью члена сообщества Club.CNews.
Редакция CNews не несет ответственности за его содержание.
1 год назад
Комментарии
Другие публикации
RU, Москва
www.polymatica.ru, менеджер по связям с общественностью
8 (495) 748-84-84
Информационные технологии

Компания «Полиматика» является экспертом в области создания аналитических решений для коммерческих компаний и государственных структур. В 2018 году «Полиматика» была названа CNews самой быстроразвивающейся компанией среди поставщиков решений для анализа данных. Аналитическая платформа Polymatica, разрабатываемая компанией с 2010 года, ориентирована на аналитиков и бизнес-пользователей, которые хотят просто и быстро извлекать ценную информацию, содержащуюся в массивах больших данных. Решение входит в реестр отечественного ПО с 2016 года.




Забыли пароль?
Зарегистрируйся сейчас!
Присоединяйся к нашему обществу для того чтобы познакомиться с новыми людьми, создать собственный блог, публиковать анонсы событий и объявления, а также участвовать в обсуждении публикаций CNews. Мы создали единое пространство для общения специалистов рынка информационных технологий и всех, кто интересуется современными технологиями. Регистрация =>